TraceRL Revolutionizes Reinforcement Learning for Diffusion Language Models in Complex Reasoning

12 hours ago 高效码农

Revolutionizing Reinforcement Learning for Diffusion Language Models How can we make diffusion language models excel at complex reasoning tasks like mathematics and coding? The answer lies in a groundbreaking trajectory-aware reinforcement learning framework called TraceRL, which aligns training objectives with the model’s actual inference process. Diffusion language models (DLMs) represent a paradigm shift in language generation, offering parallel decoding capabilities and bidirectional attention mechanisms. However, their full potential has been limited by a fundamental mismatch between traditional training objectives and the actual inference trajectory. This article introduces TraceRL—a revolutionary reinforcement learning framework that addresses this core limitation and enables DLMs …