Mastering GRPO Reinforcement Learning: Train Your LLM to Reason Like DeepSeek Using Unsloth Executive Summary: Key Findings Reasoning breakthrough: GRPO increased math reasoning accuracy by 23.5% on GSM8K benchmark Hardware democratization: Unsloth+TRL enables single-GPU training of 14B models, reducing costs by 87% vs traditional PPO Critical insights: 1B models hit reasoning ceilings (PSLE accuracy <20%) Reward function synergy: format + partial correctness > single accuracy reward (+41% convergence speed) Training risks: Incorrect KL penalties trigger reward collapse (observed 17.3% performance degradation) Industry shift: Federated learning solves data silos (Flower AI trials underway) The Reasoning Revolution: Why GRPO Changes Everything The …
RENT: An Innovative Unsupervised Reinforcement Learning Method In the ever-evolving landscape of artificial intelligence, reinforcement learning (RL) has emerged as a powerful paradigm that has enabled machine learning models to achieve remarkable breakthroughs across various domains. From mastering complex games to solving intricate mathematical problems, RL has demonstrated its potential to enhance the reasoning capabilities of AI systems. However, a long-standing challenge in RL is the design of effective reward functions, which often require external supervision or ground-truth answers. This dependency on external rewards can be impractical, especially in real-world scenarios where supervision is scarce or unavailable. The RENT Methodology …
ARPO: End-to-End Policy Optimization for GUI Agents In the modern digital era, human-computer interaction methods are continuously evolving, and GUI (Graphical User Interface) agent technology has emerged as a crucial field for enhancing computer operation efficiency. This blog post delves into a novel method called ARPO (Agentic Replay Policy Optimization), which is designed for vision-language-based GUI agents. It aims to tackle the challenge of optimizing performance in complex, long-horizon computer tasks, ushering in a new era for GUI agent development. The Evolution of GUI Agent Technology Early GUI agents relied primarily on supervised fine-tuning (SFT), training on large-scale trajectory datasets …
Advancing Math and Code Reasoning through Reinforcement Learning Introduction In the field of artificial intelligence, reasoning capability has always been a crucial benchmark for evaluating model performance. Following OpenAI’s introduction of training reasoning models using large-scale reinforcement learning (RL), significant progress has been made in this domain. However, the technical details required to reproduce the success of frontier models, such as data curation strategies and specific RL training recipes, are often omitted from reports. This leaves researchers scrambling to replicate their achievements. Recent research indicates that for smaller models, distillation remains more effective than RL. In this work, we demonstrate …
SkyRL-v0: Training Real-World AI Agents for Complex Tasks via Reinforcement Learning Overview SkyRL-v0 is an open-source reinforcement learning framework developed by the Berkeley Sky Computing Lab, designed to train AI agents for long-horizon tasks in real-world environments. Validated on benchmarks like SWE-Bench, it supports model training from 7B to 14B parameters through innovations in asynchronous rollouts and memory optimization. Latest Updates May 6, 2025: Official release of SkyRL-v0 with multi-turn tool integration capabilities Key Innovations Technical Breakthroughs Long-Horizon Optimization: Hierarchical reward shaping addresses credit assignment in complex workflows Hardware Flexibility: Native support for H100/H200 GPUs and multi-node training clusters Toolchain …
Trinity-RFT: The Next-Gen Framework for Reinforcement Fine-Tuning of Large Language Models Trinity-RFT Architecture Breaking Through RFT Limitations: Why Traditional Methods Fall Short In the fast-evolving AI landscape, Reinforcement Fine-Tuning (RFT) for Large Language Models (LLMs) faces critical challenges. Existing approaches like RLHF (Reinforcement Learning from Human Feedback) resemble using rigid templates in dynamic environments – functional but inflexible. Here’s how Trinity-RFT redefines the paradigm: 3 Critical Pain Points in Current RFT: Static Feedback Traps Rule-based reward systems limit adaptive learning Tight-Coupling Complexity Monolithic architectures create maintenance nightmares Data Processing Bottlenecks Raw data refinement becomes resource-intensive The Trinity Advantage: A Three-Pillar …