Pangu Pro MoE: How Grouped Experts Revolutionize Load Balancing in Giant AI Models Huawei’s breakthrough MoGE architecture achieves perfect device workload distribution at 72B parameters, boosting inference speed by 97% The Critical Challenge: Why Traditional MoE Fails in Distributed Systems When scaling large language models (LLMs), Mixture of Experts (MoE) has become essential for managing computational costs. The core principle is elegant: Not every input token requires full model activation. Imagine a hospital triage system where specialists handle specific cases. But this “routing” process hides a fundamental flaw: graph TD A[Input Token] –> B(Router) B –> C{Expert Selection} C –> …