WebDancer: Breakthroughs in Autonomous Information-Seeking Agents Introduction: A New Paradigm for Complex Problem-Solving Traditional AI systems often struggle with complex real-world problems due to shallow, single-step information retrieval. Yet humans solve intricate tasks through multi-step reasoning and deep exploration—like researchers cross-referencing studies or validating hypotheses. Alibaba’s Tongyi Lab now addresses this gap with WebDancer, an open-source framework for training end-to-end autonomous information-seeking agents that browse the web and reason like humans. Key breakthrough: WebDancer achieves 61.1% Pass@3 accuracy on GAIA and 54.6% on WebWalkerQA benchmarks, outperforming GPT-4o in specific tasks. Part 1: Four Core Challenges in Deep Information Retrieval Building …