Solving Spatial Confusion: How CoMPaSS Transforms Text-to-Image Diffusion Models

12 hours ago 高效码农

CoMPaSS: A Framework for Better Spatial Understanding in Text-to-Image Models Hey there, if you’re into text-to-image generation, you’ve probably noticed how these models can create stunning, realistic pictures from just a description. But have you ever wondered why they sometimes mess up simple things like “a cat to the left of a dog”? It turns out, getting spatial relationships right—like left, right, above, or below—is trickier than it seems. That’s where CoMPaSS comes in. It’s a framework designed to help existing diffusion models handle these spatial details more accurately. In this post, I’ll walk you through what CoMPaSS is, how …

Why Fourier Space Reveals the Hidden Truth About Diffusion Models’ Detail Generation

3 months ago 高效码农

Fourier Space Perspective on Diffusion Models: Why High-Frequency Detail Generation Matters 1. Fundamental Principles of Diffusion Models Diffusion models have revolutionized generative AI across domains like image synthesis, video generation, and protein structure prediction. These models operate through two key phases: 1.1 Standard DDPM Workflow Forward Process (Noise Addition): x_t = √(ᾱ_t)x_0 + √(1-ᾱ_t)ε Progressively adds isotropic Gaussian noise Controlled by decreasing noise schedule ᾱ_t Reverse Process (Denoising): Starts from pure noise (x_T ∼ N(0,I)) Uses U-Net to iteratively predict clean data 2. Key Insights from Fourier Analysis Transitioning to Fourier space reveals critical frequency-dependent behaviors: 2.1 Spectral Properties of Natural Data Data Type …