InternLM-XComposer2.5: A Breakthrough in Multimodal AI for Long-Context Vision-Language Tasks Introduction The Shanghai AI Laboratory has unveiled InternLM-XComposer2.5, a cutting-edge vision-language model that achieves GPT-4V-level performance with just 7B parameters. This open-source multimodal AI system redefines long-context processing while excelling in high-resolution image understanding, video analysis, and cross-modal content generation. Let’s explore its technical innovations and practical applications. Core Capabilities 1. Advanced Multimodal Processing Long-Context Handling Trained on 24K interleaved image-text sequences with RoPE extrapolation, the model seamlessly processes contexts up to 96K tokens—ideal for analyzing technical documents or hour-long video footage. 4K-Equivalent Visual Understanding The enhanced ViT encoder (560×560 …
Web-SSL: Redefining Visual Representation Learning Without Language Supervision The Shift from Language-Dependent to Vision-Only Models In the realm of computer vision, language-supervised models like CLIP have long dominated multimodal research. However, the Web-SSL model family, developed through a collaboration between Meta and leading universities, achieves groundbreaking results using purely visual self-supervised learning (SSL). This research demonstrates that large-scale vision-only training can not only match traditional vision task performance but also surpass language-supervised models in text-rich scenarios like OCR and chart understanding. This article explores Web-SSL’s technical innovations and provides actionable implementation guidelines. Key Breakthroughs: Three Pillars of Visual SSL 1. …