Teaching Machines to Pause and Zoom: How Video-R4 Solves Text-Rich Video QA

3 days ago 高效码农

Video-R4: Teaching Machines to Pause, Zoom and Re-read Text-Rich Videos “Why do most video-QA models hallucinate small, fleeting text? Because they never get a second look. Video-R4 fixes this by adding an explicit ‘visual rumination’ loop—select, zoom, re-encode, repeat—boosting M4-ViteVQA accuracy from 26 % to 64 % without extra data or a larger backbone.” What problem is this article solving? How to reliably answer questions that depend on tiny, transient text in the wild—news tickers, lecture slides, UI walk-throughs—when single-pass models routinely overlook or mis-read it. The single-pass ceiling: five pain-points in one shot Fixed frame budget → text appears …

POPE: The Breakthrough RL Method for Scaling LLM Reasoning on Hard Problems

7 days ago 高效码农

🧠 How to Scale RL for Hard Reasoning Problems in LLMs: A Deep Engineering Dive into POPE Based on CMU ML Blog — “How to Explore to Scale RL Training of LLMs on Hard Problems?” Written for engineers, researchers, and practitioners building RL-trained reasoning LLMs. 1. Introduction: Why RL Hits a Wall on Hard Problems Reinforcement Learning (RL) has become a central technique for improving reasoning abilities of Large Language Models. However, practitioners have started to observe a frustrating pattern: Even with large-scale rollouts, well-designed reward functions, and advanced PPO variants… LLMs simply fail to learn genuinely hard reasoning tasks. …

How Reinforcement Learning Transforms Large Language Models into Powerful Reasoning Engines

9 days ago 高效码农

Enhancing Reasoning Capabilities in Large Language Models Through Reinforcement Learning In the rapidly evolving field of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities across various domains. However, one persistent challenge has been equipping these models with deeper reasoning abilities. Recent research reveals that reinforcement learning (RL) techniques can significantly enhance language models’ performance on complex tasks requiring logical thinking and multi-step problem-solving. This article explores the latest advancements in this field, particularly how innovative training methodologies can help models maintain their broad knowledge while developing stronger analytical capabilities. Why Reinforcement Learning is Necessary for Advanced Language Models …

Seer System: Revolutionizing LLM Reinforcement Learning with Online Context Learning

13 days ago 高效码农

Seer: Accelerating Large Language Model Reinforcement Learning with Online Context Learning Reinforcement learning has become a cornerstone in developing state-of-the-art large language models, enabling significant breakthroughs in complex reasoning and problem-solving capabilities. However, traditional synchronous reinforcement learning systems face severe performance bottlenecks during the rollout phase—particularly long-tail latency and poor resource utilization. Have you ever experienced training processes slowing down because a handful of long-text generation requests dragged down overall progress? This represents a typical challenge when existing systems handle long-chain reasoning tasks. Addressing this challenge, the Seer system emerges as a groundbreaking solution. Through online context learning technology, it …

TraceRL Revolutionizes Reinforcement Learning for Diffusion Language Models in Complex Reasoning

2 months ago 高效码农

Revolutionizing Reinforcement Learning for Diffusion Language Models How can we make diffusion language models excel at complex reasoning tasks like mathematics and coding? The answer lies in a groundbreaking trajectory-aware reinforcement learning framework called TraceRL, which aligns training objectives with the model’s actual inference process. Diffusion language models (DLMs) represent a paradigm shift in language generation, offering parallel decoding capabilities and bidirectional attention mechanisms. However, their full potential has been limited by a fundamental mismatch between traditional training objectives and the actual inference trajectory. This article introduces TraceRL—a revolutionary reinforcement learning framework that addresses this core limitation and enables DLMs …

DeepSeek-R1: Revolutionizing AI Reasoning Through Reinforcement Learning

2 months ago 高效码农

# DeepSeek-R1: Enhancing Reasoning in Large Language Models via Reinforcement Learning ## Abstract DeepSeek-R1 is an advanced large language model (LLM) developed by DeepSeek-AI that leverages reinforcement learning (RL) to autonomously evolve reasoning capabilities without heavy reliance on human-annotated data. The model demonstrates remarkable improvements in mathematical reasoning, code generation, and a variety of academic benchmarks—for instance, achieving an accuracy of 77.9% on the AIME 2024 math competition, up from an initial 15.6%. This article details the training methodology, experimental results, engineering insights, and limitations of DeepSeek-R1, along with open-source resources for replication. ## 1. Introduction Reasoning capability is a …

FastTD3: Revolutionizing Reinforcement Learning for Humanoid Control with Unprecedented Speed

2 months ago 高效码农

FastTD3: Simple, Fast, and Powerful Reinforcement Learning for Humanoid Control Reinforcement learning has dramatically advanced robotics capabilities in recent years, particularly for humanoid control tasks that require complex movement and manipulation. However, traditional RL algorithms often suffer from long training times and implementation complexity that hinder practical application and rapid iteration. Addressing these challenges, researchers have developed FastTD3 – a high-performance variant of the Twin Delayed Deep Deterministic Policy Gradient algorithm specifically optimized for complex humanoid control tasks. What makes FastTD3 remarkable isn’t algorithmic complexity but rather its strategic combination of proven techniques that deliver unprecedented training speeds without sacrificing …

Biomni-R0 Revolutionizes Biomedical AI: How Reinforcement Learning Achieves Expert-Level Disease Diagnosis & Gene Prioritization

3 months ago 高效码农

# Biomni-R0: Advancing Biomedical AI with Multi-Turn Reinforcement Learning for Expert-Level Reasoning ## How is AI transforming biomedical research today? AI is rapidly becoming a cornerstone of biomedical research, enabling agents to tackle complex tasks across genomics, clinical diagnostics, and molecular biology. These tools go beyond simple fact-retrieval, aiming to reason through biological problems, interpret patient data, and extract insights from vast biomedical databases. ### Summary This section explores the expanding role of AI in biomedical research, highlighting the shift from basic data processing to advanced reasoning and tool interaction, and why domain-specific capabilities are critical for supporting modern research …

How to Train Multi-Step Agents Without Writing Reward Functions Using ART

4 months ago 高效码农

Train Multi-Step Agents for Real-World Tasks with ART An end-to-end guide for developers who hate writing reward functions Reader profile: You already know Python, have played with an LLM API, and now want the model to do something useful across many steps—play 2048, solve Temporal Clue, retrieve the right e-mail—without spending nights hand-crafting a reward function. This article explains exactly how the open-source Agent Reinforcement Trainer (ART) does that for you. 1. What problem does ART solve? Pain point How ART fixes it Writing a reward function is tedious and error-prone RULER auto-scores trajectories with another LLM GRPO training code …

GRPO Reinforcement Learning: Boost LLM Reasoning Accuracy 23.5% with Single-GPU Training

5 months ago 高效码农

Mastering GRPO Reinforcement Learning: Train Your LLM to Reason Like DeepSeek Using Unsloth Executive Summary: Key Findings Reasoning breakthrough: GRPO increased math reasoning accuracy by 23.5% on GSM8K benchmark Hardware democratization: Unsloth+TRL enables single-GPU training of 14B models, reducing costs by 87% vs traditional PPO Critical insights: 1B models hit reasoning ceilings (PSLE accuracy <20%) Reward function synergy: format + partial correctness > single accuracy reward (+41% convergence speed) Training risks: Incorrect KL penalties trigger reward collapse (observed 17.3% performance degradation) Industry shift: Federated learning solves data silos (Flower AI trials underway) The Reasoning Revolution: Why GRPO Changes Everything The …

Unsupervised Reinforcement Learning Breakthrough: How RENT’s Entropy Minimization Transforms AI Reasoning

6 months ago 高效码农

RENT: An Innovative Unsupervised Reinforcement Learning Method In the ever-evolving landscape of artificial intelligence, reinforcement learning (RL) has emerged as a powerful paradigm that has enabled machine learning models to achieve remarkable breakthroughs across various domains. From mastering complex games to solving intricate mathematical problems, RL has demonstrated its potential to enhance the reasoning capabilities of AI systems. However, a long-standing challenge in RL is the design of effective reward functions, which often require external supervision or ground-truth answers. This dependency on external rewards can be impractical, especially in real-world scenarios where supervision is scarce or unavailable. The RENT Methodology …

ARPO: Revolutionizing GUI Agent Performance with Advanced Policy Optimization

6 months ago 高效码农

ARPO: End-to-End Policy Optimization for GUI Agents In the modern digital era, human-computer interaction methods are continuously evolving, and GUI (Graphical User Interface) agent technology has emerged as a crucial field for enhancing computer operation efficiency. This blog post delves into a novel method called ARPO (Agentic Replay Policy Optimization), which is designed for vision-language-based GUI agents. It aims to tackle the challenge of optimizing performance in complex, long-horizon computer tasks, ushering in a new era for GUI agent development. The Evolution of GUI Agent Technology Early GUI agents relied primarily on supervised fine-tuning (SFT), training on large-scale trajectory datasets …

Advancing AI Reasoning: How Reinforcement Learning Transforms Math and Code Capabilities in Compact Models

6 months ago 高效码农

Advancing Math and Code Reasoning through Reinforcement Learning Introduction In the field of artificial intelligence, reasoning capability has always been a crucial benchmark for evaluating model performance. Following OpenAI’s introduction of training reasoning models using large-scale reinforcement learning (RL), significant progress has been made in this domain. However, the technical details required to reproduce the success of frontier models, such as data curation strategies and specific RL training recipes, are often omitted from reports. This leaves researchers scrambling to replicate their achievements. Recent research indicates that for smaller models, distillation remains more effective than RL. In this work, we demonstrate …

SkyRL-v0: Transforming AI Agent Training with Next-Gen Reinforcement Learning

7 months ago 高效码农

SkyRL-v0: Training Real-World AI Agents for Complex Tasks via Reinforcement Learning Overview SkyRL-v0 is an open-source reinforcement learning framework developed by the Berkeley Sky Computing Lab, designed to train AI agents for long-horizon tasks in real-world environments. Validated on benchmarks like SWE-Bench, it supports model training from 7B to 14B parameters through innovations in asynchronous rollouts and memory optimization. Latest Updates May 6, 2025: Official release of SkyRL-v0 with multi-turn tool integration capabilities Key Innovations Technical Breakthroughs Long-Horizon Optimization: Hierarchical reward shaping addresses credit assignment in complex workflows Hardware Flexibility: Native support for H100/H200 GPUs and multi-node training clusters Toolchain …

Trinity-RFT: Revolutionizing Reinforcement Fine-Tuning for Next-Gen LLMs

7 months ago 高效码农

Trinity-RFT: The Next-Gen Framework for Reinforcement Fine-Tuning of Large Language Models Trinity-RFT Architecture Breaking Through RFT Limitations: Why Traditional Methods Fall Short In the fast-evolving AI landscape, Reinforcement Fine-Tuning (RFT) for Large Language Models (LLMs) faces critical challenges. Existing approaches like RLHF (Reinforcement Learning from Human Feedback) resemble using rigid templates in dynamic environments – functional but inflexible. Here’s how Trinity-RFT redefines the paradigm: 3 Critical Pain Points in Current RFT: Static Feedback Traps Rule-based reward systems limit adaptive learning Tight-Coupling Complexity Monolithic architectures create maintenance nightmares Data Processing Bottlenecks Raw data refinement becomes resource-intensive The Trinity Advantage: A Three-Pillar …