Why News Summarization Matters in 2025
With 65% of professionals reporting information overload, automated news summarization solves critical challenges:
- 
Reduces reading time by 70% through AI-powered compression 
- 
Automatically categorizes articles into 8+ domains (Technology, Health, Sports, etc.) 
- 
Supports real-time updates from 300+ global news sources 
- 
Enables API integration for enterprise workflows 
Technical Architecture Deep Dive
Dual-Module System Design
- 
Streamlit Frontend (Python-based): - 
Keyword search with semantic understanding 
- 
Direct URL input validation 
- 
Batch processing capability 
 
- 
- 
FastAPI Backend (RESTful API): - 
Asynchronous task handling 
- 
Model pipeline orchestration 
- 
Redis caching integration 
 
- 
Core Processing Workflow
# Sample code from RAG_News_NB.ipynb
def generate_summary(input):
    if input_type == 'url':
        content = web_scraper(input)
    else:
        content = news_retriever(keywords=input)
    
    processed_text = text_cleaner(content)
    category = bert_classifier(processed_text)
    summary = pegasus_summarizer(processed_text)
    chromadb.store(category, summary)
    return {'category': category, 'summary': summary}
Step-by-Step Implementation Guide
Local Development Setup
# Clone repository
git clone https://github.com/Abdelrahman-Elshahed/News_Summerization_Using_RAG--Graduation_Project_DEPI.git
cd News_Summerization_Using_RAG--Graduation_Project_DEPI
# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
Running Services
- 
Launch Streamlit Frontend (Port 8501): 
streamlit run APP-Streamlit.py
- 
Start FastAPI Backend (Port 8000): 
uvicorn APP-FastAPI:app --reload
Production Deployment Strategies
Docker Containerization
# Optimized Dockerfile
FROM python:3.9-slim-buster
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "APP-FastAPI:app", "--host", "0.0.0.0"]
Build and run commands:
docker build -t news_summarizer .
docker run -p 8000:8000 news_summarizer
MLflow Model Monitoring
Key tracking features:
- 
ROUGE/L scores for summary quality 
- 
Model inference latency 
- 
Error rate analysis 
- 
API request statistics 
Core NLP Components
Text Processing Pipeline
- 
Content Cleaner: - 
Ad removal using DOM analysis 
- 
Multi-language support 
- 
Readability scoring 
 
- 
- 
Classification Engine: - 
Fine-tuned BERT-base model 
- 
Dynamic category learning 
- 
Confidence thresholding 
 
- 
- 
Summarization Module: - 
PEGASUS-large pre-trained model 
- 
Context-aware compression 
- 
Named entity preservation 
 
- 
Retrieval-Augmented Generation (RAG)
- 
Semantic vector indexing 
- 
Hybrid search (keyword + vector) 
- 
Cache warming system 
- 
Incremental data updates 
Performance Benchmarks
Speed Comparison
| Request Type | v1.0 | v2.0 (Optimized) | 
|---|---|---|
| Keyword Search | 2.1s | 0.9s | 
| URL Processing | 1.7s | 0.8s | 
| Batch Mode (10 articles) | 8.9s | 3.7s | 
Memory Optimization
- 
On-demand model loading 
- 
TensorRT acceleration 
- 
Garbage collection tuning 
- 
GPU memory pooling 
Real-World Applications
- 
Media Monitoring: Track brand mentions across news outlets 
- 
Academic Research: Create literature review databases 
- 
Financial Analysis: Monitor market-moving events 
- 
Content Curation: Power personalized news feeds 
Security & Compliance
- 
End-to-end HTTPS encryption 
- 
GDPR-compliant data handling 
- 
Regular security audits 
- 
Role-based access control 
Extension Capabilities
- 
Custom model plugins 
- 
Multi-language summarization 
- 
Social media integration 
- 
Automated report generation 
Roadmap Highlights
- 
Q3 2024: Audio/video summarization 
- 
Q4 2024: Personalized recommendation engine 
- 
Q1 2025: Edge computing deployment 
Get Started Today
Clone the repository containing:
- 
Pre-trained model weights 
- 
Sample dataset 
- 
Postman API collection 
- 
Load testing scripts 
git clone https://github.com/Abdelrahman-Elshahed/News_Summerization_Using_RAG--Graduation_Project_DEPI.git

