Cactus Framework: The Ultimate Solution for On-Device AI Development on Mobile

Why Do We Need Mobile-Optimized AI Frameworks?

Cactus Architecture Diagram
Cactus Architecture Diagram

With smartphone capabilities reaching new heights, running AI models locally has become an industry imperative. The Cactus framework addresses three critical technical challenges through innovative solutions:

  1. Memory Optimization – 1.2GB memory footprint for 1.5B parameter models
  2. Cross-Platform Consistency – Unified APIs for Flutter/React-Native
  3. Power Efficiency – 15% battery drain for 3hr continuous inference
Technical Architecture Overview
[Architecture Diagram]
Application Layer → Binding Layer → C++ Core → GGML/GGUF Backend
Supports React/Flutter/Native implementations
Optimized via Llama.cpp computation

Core Feature Matrix

Implemented Features

  • ✅ Text Generation & Chat Completion
  • ✅ Vision-Language Models (VLM)
  • ✅ Streaming Token Generation
  • ✅ Early-Stage TTS Support
  • ✅ JSON Schema Validation
  • ✅ Jinja2 Template Engine

Roadmap Features

  • 🔜 Cross-App Agent Workflows
  • 🔜 Local File System Access
  • 🔜 Planning & Evaluation Modules
  • 🔜 High-Level Sentiment Analysis APIs

3-Minute Setup Guide

Flutter Integration

# Add to pubspec.yaml
dependencies:
  cactus: ^0.0.3
flutter pub get

React Native Implementation

# NPM Installation
npm install cactus-react-native

# iOS Dependencies
cd ios && npx pod-install

C++ Native Development

# Language Model Example
cd example/cpp-llm && ./build.sh

Performance Benchmarks

Device Model Gemma-3 1B Qwen-2.5 1.5B SmolLM2 360M
iPhone 16 Pro Max 43t/s 29t/s 103t/s
Galaxy S24 Ultra 36t/s
Google Pixel 8 16t/s

Note: t/s = tokens per second


Real-World Implementation Examples

Smart Note-Taking App

// Flutter Implementation
final meetingSummary = await Cactus.generate(
  prompt: "Summarize key points: ${voiceInput}",
  maxTokens: 500
);

Cross-Modal Search

// React Native Implementation
const searchResults = await cactus.vlmSearch(
  image: cameraCapture,
  query"Identify all electronic devices"
);

Advanced Developer Guide

Model Conversion

# Using GGUF Toolchain
python convert.py --input model.bin --output model.gguf

Memory Optimization

// C++ Configuration
ctx = llama_new_context_with_model(model, {
  .n_gpu_layers = 30,
  .main_gpu = 0,
  .low_vram = true
});

Technical FAQ

How to Choose Models?

  • Entry-Level: SmolLM2 360M (<500MB RAM)
  • Performance: Qwen-2.5 1.5B (1.8GB RAM)
  • Vision Tasks: SmolVLM (Image Understanding)

Device Requirements?

  • iOS: A12 Chip or newer
  • Android: Snapdragon 865/Dimensity 1000+
  • Minimum RAM: 2GB Free Space

Ecosystem Resources

Official Documentation

Sample Projects

  1. Cross-Platform Chat
  2. Smart Diary System
  3. AR Vision Assistant

Contribution Guidelines

Development Process

  1. Create detailed feature proposals
  2. Follow existing test patterns
  3. Run validation pre-PR submission
./scripts/test-cactus.sh

Support Channels

  • Developer Email: founders@cactuscompute.com
  • Discord Community: Join Discussion

Live Application Demos

iOS Download
Android Download


All performance data sourced from official Cactus benchmarks. Actual results may vary based on device configuration and environmental conditions. Developers are encouraged to test with sample projects.