HeyGem Open-Source Digital Human: A Comprehensive Guide from Local Deployment to API Integration

Project Overview

HeyGem is an open-source digital human solution developed by Silicon Intelligence, enabling rapid cloning of human appearances and voices through a 10-second video sample. Users can generate lip-synced broadcast videos by inputting text scripts or uploading audio files. The project offers local deployment and API integration modes to meet diverse development and enterprise needs.


Core Features Breakdown

1. Precision Cloning Technology

  • Appearance Replication: Utilizes AI algorithms to capture facial contours and features, constructing high-precision 3D models
  • Voice Cloning: Extracts vocal characteristics with adjustable parameters, achieving over 95% similarity to original voices

2. Multi-Modal Control System

  • Text-driven: Converts scripts to natural speech via NLP
  • Audio-driven: Analyzes rhythm and intonation for corresponding facial animations
  • Multi-language Support: 8 languages including EN, ZH, JP, KO

3. Offline Video Synthesis

  • Full local processing ensures data privacy
  • Intelligent AV synchronization (<0.1s error)
  • Supports batch processing and long-form video generation
HeyGem Workflow Diagram

Hardware Configuration Guide

Windows Requirements

Component Minimum Recommended
CPU i5-10400F i5-13400F
RAM 16GB DDR4 32GB DDR5
GPU RTX 3060 8G RTX 4070 12G
Storage 120GB SSD 1TB NVMe SSD

Ubuntu Special Requirements

  • Requires NVIDIA Container Toolkit
  • Kernel version ≥6.8.0-52-generic
  • CUDA 12.0+ environment mandatory

Step-by-Step Deployment Tutorial

Windows Installation Process

  1. Pre-Installation Checks

    • Verify ≥30GB free space on D drive
    • Confirm NVIDIA driver version ≥535.98
    • Check WSL status: wsl --list --verbose
  2. Core Component Installation

    # Install WSL subsystem
    wsl --install
    # Update Docker environment
    wsl --update
    
  3. Server Deployment

    cd /deploy
    docker-compose up -d
    
    • ≈70GB data download required
    • Initial startup takes ≈30 minutes
  4. Client Configuration

    • Download latest installer from GitHub Releases
    • Default storage path: D:\heygem_data

Ubuntu Optimization Guide

# Configure NVIDIA runtime
sudo nvidia-ctk runtime configure --runtime=docker
# Launch Linux-specific image
docker-compose -f docker-compose-linux.yml up -d

API Development Documentation

Model Training Interface

POST http://127.0.0.1:18180/v1/preprocess_and_tran
{
  "format": ".wav",
  "reference_audio": "train_data/voice_sample.wav",
  "lang": "zh"
}

Video Synthesis Workflow

  1. Audio Preprocessing

    # Get ASR results
    response = requests.post(preprocess_url, json=voice_params)
    asr_audio = response.json()['asr_format_audio_url']
    
  2. Video Generation

    video_params = {
      "audio_url": "output/audio_final.wav",
      "video_url": "models/base_avatar.mp4",
      "code": str(uuid.uuid4())
    }
    
  3. Progress Monitoring

    GET http://127.0.0.1:8383/easy/query?code=3b6a5d8e-7c12-4feb
    

Performance Optimization Strategies

GPU Memory Management

  • Use lite version: docker-compose -f docker-compose-lite.yml
  • Reduce resolution: 1080p→720p saves 40% VRAM
  • Maintain ≥5min intervals between batch jobs

RTX 5090 Optimization

cd /deploy
docker-compose -f docker-compose-5090.yml up -d

Commercial Applications

Enterprise Solutions

  • E-commerce: 24/7 AI-powered live streaming
  • Education: Multilingual tutorial generation
  • Customer Service: Intelligent virtual agents

Licensing Terms

  • Free tier: <100K users & <$10M annual revenue
  • Commercial license: Customized service agreement

Developer Ecosystem

Open-Source Collaboration Program

  • Tutorial incentives: $20-$50 for quality content
  • Monthly MVP rewards: Blockchain-based digital badge
  • Dev community: Scan QR to join core group

Troubleshooting Guide

Service Initialization Issues

  1. Verify Docker status:

    docker ps -a | grep heygem
    
  2. Check GPU drivers:

    nvidia-smi
    
  3. Review logs:

    Get-Content "D:\heygem_data\logs\service.log" -Tail 100
    

Video Rendering Optimization

  • Lower resolution to 720p
  • Close GPU-intensive applications
  • Update to latest GPU drivers

Technical Architecture

Core Stack

  • Speech Processing: FunASR + Fish-Speech
  • Visual Engine: PyTorch3D + OpenCV
  • Animation System: Progressive Growing GANs

Algorithm Performance

  • Lip-sync accuracy: 92.7%
  • Frame rendering: ≤35ms (RTX 4070)
  • Audio compensation: ±80ms dynamic adjustment

Platform Integration

Coze Marketplace


Roadmap Updates

Development Timeline

  • Mobile SDK (Q3 release)
  • Real-time mode (≤500ms latency)
  • 200+ micro-expressions library

Contribution Guidelines

  • Priority for PRs with test cases
  • Major features require CLA signing
  • Document translators get special badge

Learning Resources

Official Documentation

Community Tutorials

  1. 8GB VRAM Optimization
  2. ComfyUI Integration
  3. Enterprise Deployment Case

Project Repository: https://github.com/GuijiAI/HeyGem.ai
Business Inquiry: james@duix.com
License: MIT License