Integrating Large Language Models in Enterprise Java Applications with Spring Boot
“
“To build AI, thou must switch to Python.” — Ancient Developer Scrolls (probably)
If you’re a Java developer who’s encountered Python-centric AI tutorials and questioned whether to abandon Java, reconsider that approach. Through Spring AI and Ollama, you can now interact with large language models (LLMs) using exclusively Java + Spring Boot—without Python environments or Jupyter Notebooks.
This guide demonstrates how to build an enterprise-ready AI application entirely within the Java ecosystem.
Core Application Functionality
We’ll implement a REST API that:
-
Accepts user prompts via the /chat
endpoint -
Routes requests to a local LLM through Ollama -
Returns AI-generated responses -
Operates entirely within the Java/Spring Boot stack
Why This Approach Suits Java Developers
-
✅ Run LLMs locally (GPU optional) -
✅ Maintain Spring Boot development patterns -
✅ Integrate with existing Java microservices -
✅ Avoid cross-language maintenance complexity
Technology Components Explained
Ollama: Local LLM Execution Engine
Ollama delivers out-of-the-box LLM management with one-command deployments:
# Install model (example: llama2)
ollama pull llama2
# Launch model service
ollama run llama2
The model service runs at http://localhost:11434
, effectively creating a local AI service instance.
Implementation Walkthrough
Step 1: Initialize Spring Boot Project
Generate your project via Spring Initializr with:
-
Spring Web -
Spring Boot DevTools
Add Ollama dependency to pom.xml
:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
<version>0.7.0</version>
</dependency>
Step 2: Configure Model Parameters
In application.yml
:
spring:
ai:
ollama:
chat:
model: llama2 # Must match locally running model
base-url: http://localhost:11434
Step 3: Implement API Controller
Create the REST controller:
@RestController
public class OllamaChatController {
private final OllamaChatModel chatModel;
// Constructor injection
public OllamaChatController(OllamaChatModel chatModel) {
this.chatModel = chatModel;
}
@PostMapping("/chat")
public ResponseEntity<String> chatBot(@RequestBody String userQuery) {
// Invoke model and return response
String response = chatModel.call(userQuery);
return ResponseEntity.ok(response);
}
}
Step 4: Test AI Service
Launch the application:
./mvnw spring-boot:run
Validate with curl:
curl -X POST http://localhost:8080/chat \
-H "Content-Type: text/plain" \
-d "Explain Java's garbage collection mechanism"
Enterprise Feature Extensions
Spring AI supports advanced capabilities:
Solution Advantages
1. Data Security
-
All processing occurs locally -
Eliminates third-party API data exposure
2. Performance Efficiency
-
Sub-1ms local network latency -
No remote API response delays
3. Cost Management
-
Zero cloud service fees -
No token-based pricing
4. Technical Consistency
-
Leverage existing Java expertise -
Seamless Spring ecosystem integration
Frequently Asked Questions (FAQ)
Q1: Is Python required?
No. The entire solution uses Java and Spring Boot, with Ollama as a standalone local runtime.
Q2: Can different LLMs be used?
Yes. Ollama supports dozens of open-source models. Switch via configuration:
spring.ai.ollama.chat.model: mistral # Switch to Mistral
Q3: How to handle multi-turn conversations?
Spring AI’s ChatMemory
interface maintains context:
@Bean
public ChatMemory chatMemory() {
return new SimpleChatMemory();
}
Q4: Is streaming supported?
Yes. Modify the controller for streaming:
@PostMapping("/stream")
public Flux<String> streamChat(@RequestBody String prompt) {
return chatModel.stream(prompt);
}
Q5: What hardware is required?
Most 7B-parameter models run on CPUs. GPUs accelerate performance (optional).
Technical Validation
Complete Code Access
Open-source project available:
👉 github.com/Aman20aug/SpringAI
Includes:
-
Runnable Spring Boot project -
Configuration templates -
Test cases -
Multi-model demonstration
Conclusion: Java’s Position in AI
Enterprise applications can integrate AI without stack overhaul. Through Spring AI + Ollama:
-
Maintain technical consistency – Preserve Java development standards -
Reduce migration costs – Eliminate Python training needs -
Control infrastructure – Full on-premises deployment
When questioned whether Java supports AI, you can now respond:
“With Spring Boot and Ollama, my Java application runs LLMs locally.”