Y2A-Auto: The Complete Solution for Automated YouTube to AcFun Video Transfers

Effortlessly bridge content across platforms with AI-powered translation, automated processing, and intelligent monitoring

1. Why Automated Video Transfer Matters

Content creators face consistent challenges:

  • Manual downloading/reuploading wastes hours weekly
  • Language barriers limit audience reach
  • Platform-specific formatting requires technical skills
  • Consistent cross-posting demands significant effort

Y2A-Auto solves these fundamentally. This open-source Flask application automates YouTube-to-AcFun transfers while handling technical complexities behind the scenes.

2. Core Functionality Breakdown

2.1 Intelligent YouTube Monitoring

graph LR
A[Monitoring Sources] --> B{Monitoring Types}
B --> C(Trending Videos)
B --> D(Keyword Searches)
B --> E(Specific Channels)
E --> F[Blacklist/Whitelist]
C --> G[Custom Filters]
G --> H[Views/Likes/Duration]
H --> I[Auto-Queueing]

Monitoring capabilities:

  • Regional tracking: US, JP and other regional trends
  • Precision filtering: View thresholds (≥100K), like ratios (≥95%)
  • Flexible scheduling: Timed scans (every 6hrs) or manual triggers
  • Content exclusion: Block sensitive or low-quality keywords

2.2 AI-Enhanced Processing Pipeline

Stage Technology Output Quality
Video Download yt-dlp engine 4K/1080P multi-resolution support
Subtitle Extraction Auto-language detection Identifies EN/JP/KR source languages
AI Translation OpenAI GPT-3.5/4 Full title+description+subtitle translation
Content Moderation Aliyun Security API Auto-blocks policy-violating content
Tag Generation Context analysis 5-8 relevant tags
Category Matching Content profiling Smart AcFun category suggestions (Tech/Lifestyle)

2.3 Visual Task Management

Web interface displays:

  • Progress tracking (30% downloaded → 50% translated → 100% uploaded)
  • Real-time error alerts (API failures/network issues)
  • Historical performance analytics
  • Manual review checkpoint

3. 5-Minute Deployment Guide

3.1 Docker Deployment (Recommended)

# Clone repository
git clone https://github.com/fqscfqj/Y2A-Auto.git
cd Y2A-Auto

# Launch service
docker-compose up -d

# Verify operation
docker-compose logs -f

Directory structure:

/app
├── config # Configuration files
├── db # Database
├── downloads # Video cache
├── cookies # Platform credentials
└── logs # Operation records

3.2 Native Python Installation

# Create virtual environment
python -m venv .venv
source .venv/bin/activate # Linux/Mac

# Install dependencies
pip install -r requirements.txt

# Install FFmpeg (Ubuntu example)
sudo apt install ffmpeg

# Start service
python app.py

4. Practical Workflow Demonstration

4.1 Browser Extension Workflow

  1. Install Tampermonkey extension
  2. Add push script:

    // ==UserScript==
    // @name         PushToY2AAuto
    // @match        *://www.youtube.com/*
    // @grant        GM_xmlhttpRequest
    // ==/UserScript==
    
  3. Click “Push to Y2A-Auto” on YouTube pages

4.2 Manual Task Processing

  1. Access http://localhost:5000
  2. Paste YouTube URL in task manager
  3. Configure options:

    • [x] Translate title
    • [x] Generate AI tags
    • [ ] Skip content review
  4. Click “Start Processing”

4.3 Subtitle Configuration

{
  "SUBTITLE_TRANSLATION_ENABLED"true,
  "SUBTITLE_SOURCE_LANGUAGE""auto",
  "SUBTITLE_TARGET_LANGUAGE""zh",
  "SUBTITLE_BATCH_SIZE"5,
  "SUBTITLE_EMBED_IN_VIDEO"true
}

Function: Translates 5 lines per batch to Chinese and embeds subtitles directly in video

5. Critical Configuration Guide

5.1 API Key Setup

YouTube Data API:

  1. Visit Google Cloud Console
  2. Create project → Enable YouTube Data API v3
  3. Generate API Key in Credentials section

OpenAI Configuration:

{
  "OPENAI_API_KEY""sk-xxx",
  "OPENAI_MODEL_NAME""gpt-3.5-turbo",
  "TRANSLATE_DESCRIPTION"true
}

5.2 Cookie Management

AcFun Cookie Extraction:

  1. Log in to AcFun → Press F12
  2. Navigate: Application → Cookies
  3. Export all cookies as text file
  4. Upload via web interface to /cookies

Required Format:

.acfun.cn TRUE / FALSE 1672485767 auth_key xxxxxxx
.acfun.cn TRUE / FALSE 1672485767 acPasstoken yyyyyyy

6. Technical Architecture Analysis

6.1 System Workflow

flowchart TB
    subgraph Input Sources
        A[YouTube URLs] --> B[Monitoring System]
        C[Browser Extension] --> B
    end

    subgraph Processing Core
        B --> D[Download Module]
        D --> E[Subtitle Engine]
        E --> F[AI Translation]
        F --> G[Content Moderation]
        G --> H[AcFun Uploader]
    end

    subgraph Output
        H --> I[AcFun Video Page]
    end

    subgraph Support Systems
        J[Flask Dashboard] --> K[Task Scheduler]
        L[SQLite Database] --> M[State Management]
    end

6.2 Technology Stack

Component Solution Version
Framework Flask ≥2.3.3
Video Handling yt-dlp 2025.5.22+
AI Services OpenAI SDK ≥1.0.0
Scheduling APScheduler 3.10.1
Frontend Bootstrap 5.x
Containerization Docker 20.10.0+

7. Troubleshooting Common Issues

7.1 Monitoring Errors

Problem: YouTube API quota exhaustion
Solutions:

  1. Reduce scan frequency (e.g., hourly → daily)
  2. Request quota increase via Google Cloud Console
  3. Apply strict filters to minimize requests

Problem: Low-quality video detection
Configuration fix:

{
  "MIN_VIEW_COUNT"100000,
  "MIN_LIKE_RATIO"0.95,
  "BLACKLIST_KEYWORDS": ["sensitive","spam"]
}

7.2 Subtitle Translation Optimization

Quality improvements:

  • Upgrade model: OPENAI_MODEL_NAME=gpt-4
  • Reduce batch size: SUBTITLE_BATCH_SIZE=3 (slower but more accurate)
  • Specify source language: SUBTITLE_SOURCE_LANGUAGE="en"

Error resolution:

ERROR: Subtitle translation failed - OpenAI timeout

Diagnosis steps:

  1. Test connectivity to api.openai.com
  2. Verify API key balance
  3. Check rate limit status

7.3 Upload Failures

Error: AcFun upload failed: Cookie expired
Resolution:

  1. Refresh AcFun login credentials
  2. Re-upload cookie via web interface
  3. Restart service

Network diagnostics:

# Test AcFun connectivity
curl -I https://www.acfun.cn

# Validate YouTube access
docker exec y2a-auto yt-dlp -F https://youtube.com/watch?v=xxx

8. Advanced Implementation Techniques

8.1 Multi-Channel Monitoring

  1. Create monitor_config.json:

    [
      {
        "name""Tech Channel Monitor",
        "type""channel",
        "channel_id""UCxxxx",
        "schedule""every 6 hours",
        "min_views"50000
      },
      {
        "name""Trend Keyword Tracker",
        "type""search",
        "keywords""AI breakthroughs",
        "region""CN"
      }
    ]
    
  2. Import via web interface
  3. Enable auto-scheduling

8.2 Video Preprocessing Rules

Define in video_rules.json:

{
  "resolution""1080p",
  "format""mp4",
  "thumbnail_style": {
    "add_logo"true,
    "logo_position""bottom-right"
  }
}

9. Security & Maintenance Protocol

9.1 Security Practices

  1. Credential management:

    • Never commit API keys to Git
    • Use environment variables for secrets
  2. Access control:

    # Restrict dashboard access
    flask run --host=127.0.0.1
    
  3. Audit logging:

    • Automatic daily log rotation: logs/access_20240608.gz

9.2 System Maintenance

Backup procedure:

# Full system backup
tar -czf y2a-backup-$(date +%Y%m%d).tar.gz config db cookies

Version upgrade:

# Docker update sequence
docker-compose down
docker pull fqscfqj/y2a-auto:latest
docker-compose up -d

10. Value Proposition & Roadmap

10.1 Core Benefits

  • Time savings: 1-hour manual process → 10-minute automation
  • Language solutions: 85%+ translation accuracy
  • Compliance protection: Automated content screening
  • Resource efficiency: 60% server load reduction

10.2 Future Development

  1. Platform expansion: Bilibili/Douyin support
  2. Voice cloning: Localized dubbing
  3. Auto-editing: Short-form content generation
  4. Cluster deployment: Distributed processing

GitHub Repository: https://github.com/fqscfqj/Y2A-Auto
License: GNU GPL v3.0


Appendix: Technical Reference

Module Parameter Default Description
Monitoring DEFAULT_REGION US Tracking region
MAX_RESULTS 10 Videos per scan
Subtitles BATCH_SIZE 5 Translation unit size
MAX_WORKERS 3 Concurrent processes
AI MODEL_NAME gpt-3.5-turbo Translation model
System DOWNLOAD_TIMEOUT 1800 Download timeout (sec)

Technical FAQ

Q: Docker container fails to start. How to diagnose?
A: Check sequentially:

  1. Port conflict: lsof -i:5000
  2. Storage space: df -h /
  3. Image integrity: docker-compose build --no-cache

Q: Video processing stalls at download phase.
A: Troubleshooting steps:

# Manual download test
docker exec -it y2a-auto yt-dlp https://youtube.com/watch?v=xxx
# Verify directory permissions
ls -ld downloads/

Q: AI-generated tags are inaccurate.
A: Modify prompt template:

# In ai_enhancer.py
PROMPT_TEMPLATE = "Generate 5 Chinese tags based on: {video_info}"