Y2A-Auto: The Complete Solution for Automated YouTube to AcFun Video Transfers
Effortlessly bridge content across platforms with AI-powered translation, automated processing, and intelligent monitoring
1. Why Automated Video Transfer Matters
Content creators face consistent challenges:
-
Manual downloading/reuploading wastes hours weekly -
Language barriers limit audience reach -
Platform-specific formatting requires technical skills -
Consistent cross-posting demands significant effort
Y2A-Auto solves these fundamentally. This open-source Flask application automates YouTube-to-AcFun transfers while handling technical complexities behind the scenes.
2. Core Functionality Breakdown
2.1 Intelligent YouTube Monitoring
graph LR
A[Monitoring Sources] --> B{Monitoring Types}
B --> C(Trending Videos)
B --> D(Keyword Searches)
B --> E(Specific Channels)
E --> F[Blacklist/Whitelist]
C --> G[Custom Filters]
G --> H[Views/Likes/Duration]
H --> I[Auto-Queueing]
Monitoring capabilities:
-
Regional tracking: US, JP and other regional trends -
Precision filtering: View thresholds (≥100K), like ratios (≥95%) -
Flexible scheduling: Timed scans (every 6hrs) or manual triggers -
Content exclusion: Block sensitive or low-quality keywords
2.2 AI-Enhanced Processing Pipeline
2.3 Visual Task Management
Web interface displays:
-
Progress tracking (30% downloaded → 50% translated → 100% uploaded) -
Real-time error alerts (API failures/network issues) -
Historical performance analytics -
Manual review checkpoint
3. 5-Minute Deployment Guide
3.1 Docker Deployment (Recommended)
# Clone repository
git clone https://github.com/fqscfqj/Y2A-Auto.git
cd Y2A-Auto
# Launch service
docker-compose up -d
# Verify operation
docker-compose logs -f
Directory structure:
/app
├── config # Configuration files
├── db # Database
├── downloads # Video cache
├── cookies # Platform credentials
└── logs # Operation records
3.2 Native Python Installation
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # Linux/Mac
# Install dependencies
pip install -r requirements.txt
# Install FFmpeg (Ubuntu example)
sudo apt install ffmpeg
# Start service
python app.py
4. Practical Workflow Demonstration
4.1 Browser Extension Workflow
-
Install Tampermonkey extension -
Add push script: // ==UserScript== // @name PushToY2AAuto // @match *://www.youtube.com/* // @grant GM_xmlhttpRequest // ==/UserScript==
-
Click “Push to Y2A-Auto” on YouTube pages
4.2 Manual Task Processing
-
Access http://localhost:5000
-
Paste YouTube URL in task manager -
Configure options: -
[x] Translate title -
[x] Generate AI tags -
[ ] Skip content review
-
-
Click “Start Processing”
4.3 Subtitle Configuration
{
"SUBTITLE_TRANSLATION_ENABLED": true,
"SUBTITLE_SOURCE_LANGUAGE": "auto",
"SUBTITLE_TARGET_LANGUAGE": "zh",
"SUBTITLE_BATCH_SIZE": 5,
"SUBTITLE_EMBED_IN_VIDEO": true
}
Function: Translates 5 lines per batch to Chinese and embeds subtitles directly in video
5. Critical Configuration Guide
5.1 API Key Setup
YouTube Data API:
-
Visit Google Cloud Console -
Create project → Enable YouTube Data API v3 -
Generate API Key in Credentials section
OpenAI Configuration:
{
"OPENAI_API_KEY": "sk-xxx",
"OPENAI_MODEL_NAME": "gpt-3.5-turbo",
"TRANSLATE_DESCRIPTION": true
}
5.2 Cookie Management
AcFun Cookie Extraction:
-
Log in to AcFun → Press F12 -
Navigate: Application → Cookies -
Export all cookies as text file -
Upload via web interface to /cookies
Required Format:
.acfun.cn TRUE / FALSE 1672485767 auth_key xxxxxxx
.acfun.cn TRUE / FALSE 1672485767 acPasstoken yyyyyyy
6. Technical Architecture Analysis
6.1 System Workflow
flowchart TB
subgraph Input Sources
A[YouTube URLs] --> B[Monitoring System]
C[Browser Extension] --> B
end
subgraph Processing Core
B --> D[Download Module]
D --> E[Subtitle Engine]
E --> F[AI Translation]
F --> G[Content Moderation]
G --> H[AcFun Uploader]
end
subgraph Output
H --> I[AcFun Video Page]
end
subgraph Support Systems
J[Flask Dashboard] --> K[Task Scheduler]
L[SQLite Database] --> M[State Management]
end
6.2 Technology Stack
7. Troubleshooting Common Issues
7.1 Monitoring Errors
Problem: YouTube API quota exhaustion
Solutions:
-
Reduce scan frequency (e.g., hourly → daily) -
Request quota increase via Google Cloud Console -
Apply strict filters to minimize requests
Problem: Low-quality video detection
Configuration fix:
{
"MIN_VIEW_COUNT": 100000,
"MIN_LIKE_RATIO": 0.95,
"BLACKLIST_KEYWORDS": ["sensitive","spam"]
}
7.2 Subtitle Translation Optimization
Quality improvements:
-
Upgrade model: OPENAI_MODEL_NAME=gpt-4
-
Reduce batch size: SUBTITLE_BATCH_SIZE=3
(slower but more accurate) -
Specify source language: SUBTITLE_SOURCE_LANGUAGE="en"
Error resolution:
ERROR: Subtitle translation failed - OpenAI timeout
Diagnosis steps:
-
Test connectivity to api.openai.com
-
Verify API key balance -
Check rate limit status
7.3 Upload Failures
Error: AcFun upload failed: Cookie expired
Resolution:
-
Refresh AcFun login credentials -
Re-upload cookie via web interface -
Restart service
Network diagnostics:
# Test AcFun connectivity
curl -I https://www.acfun.cn
# Validate YouTube access
docker exec y2a-auto yt-dlp -F https://youtube.com/watch?v=xxx
8. Advanced Implementation Techniques
8.1 Multi-Channel Monitoring
-
Create monitor_config.json
:[ { "name": "Tech Channel Monitor", "type": "channel", "channel_id": "UCxxxx", "schedule": "every 6 hours", "min_views": 50000 }, { "name": "Trend Keyword Tracker", "type": "search", "keywords": "AI breakthroughs", "region": "CN" } ]
-
Import via web interface -
Enable auto-scheduling
8.2 Video Preprocessing Rules
Define in video_rules.json
:
{
"resolution": "1080p",
"format": "mp4",
"thumbnail_style": {
"add_logo": true,
"logo_position": "bottom-right"
}
}
9. Security & Maintenance Protocol
9.1 Security Practices
-
Credential management: -
Never commit API keys to Git -
Use environment variables for secrets
-
-
Access control: # Restrict dashboard access flask run --host=127.0.0.1
-
Audit logging: -
Automatic daily log rotation: logs/access_20240608.gz
-
9.2 System Maintenance
Backup procedure:
# Full system backup
tar -czf y2a-backup-$(date +%Y%m%d).tar.gz config db cookies
Version upgrade:
# Docker update sequence
docker-compose down
docker pull fqscfqj/y2a-auto:latest
docker-compose up -d
10. Value Proposition & Roadmap
10.1 Core Benefits
-
Time savings: 1-hour manual process → 10-minute automation -
Language solutions: 85%+ translation accuracy -
Compliance protection: Automated content screening -
Resource efficiency: 60% server load reduction
10.2 Future Development
-
Platform expansion: Bilibili/Douyin support -
Voice cloning: Localized dubbing -
Auto-editing: Short-form content generation -
Cluster deployment: Distributed processing
GitHub Repository: https://github.com/fqscfqj/Y2A-Auto
License: GNU GPL v3.0
Appendix: Technical Reference
Technical FAQ
Q: Docker container fails to start. How to diagnose?
A: Check sequentially:
-
Port conflict: lsof -i:5000
-
Storage space: df -h /
-
Image integrity: docker-compose build --no-cache
Q: Video processing stalls at download phase.
A: Troubleshooting steps:
# Manual download test
docker exec -it y2a-auto yt-dlp https://youtube.com/watch?v=xxx
# Verify directory permissions
ls -ld downloads/
Q: AI-generated tags are inaccurate.
A: Modify prompt template:
# In ai_enhancer.py
PROMPT_TEMPLATE = "Generate 5 Chinese tags based on: {video_info}"