Unlocking Historical Archives with AI: The SEB-OCR Technical Guide
Why We Need Intelligent Historical Document Processing
In political science, history, and archival research, vast collections of historical materials exist as scanned images. Traditional OCR technology can recognize text but struggles with 「contextual relationships」, 「cross-page references」, and 「semantic structure」. This is where SEB-OCR delivers transformative value—it uses 「multimodal AI models」 to convert disordered historical scans into structured, analyzable datasets.
❝
Five-step pipeline transforms images into structured data❞
Technical Architecture: The Five-Step Transformation Process
Step 1: Intelligent OCR Transcription
-
「Core Technology」: Google’s Gemini multimodal model -
「Key Innovations」: -
Adaptive rate limiter dynamically controls API call frequency -
Parallel processing accelerates transcription (default: 10 threads) -
Handcrafted prompts optimize historical document recognition
-
# Conceptual call structure (simplified)
gemini.ocr(image, prompt="Transcribe 19th-century printed text preserving original spellings")
Step 2: Sliding-Window Entity Extraction
Parameter | Default | Function |
---|---|---|
WINDOW_SIZE |
5 | Consecutive pages per window |
WINDOW_STEP |
2 | Window slide step (3-page overlap) |
[Page1] [Page2] [Page3] [Page4] [Page5] ← Window 1
[Page3] [Page4] [Page5] [Page6] ← Window 2 (3-page overlap)
Step 3: Incremental Caching System
output/
├── transcriptions/ # Raw OCR text
├── window_outputs/ # Window-level JSON cache
└── final_outputs/ # Processed results
Step 4: Semantic Deduplication
-
Extract candidate entities (people/organizations/locations) -
Generate vectors using text-embedding-004
-
Cluster by cosine similarity to merge duplicates
Step 5: Dual-Format Output
-
entities.json
: Machine-readable structured data -
entities.csv
: Researcher-friendly spreadsheet format
Practical Implementation Guide
Environment Setup
# Clone repository
git clone https://github.com/ALucek/seb-ocr.git
cd seb-ocr
# Install dependencies (uv recommended)
uv sync
Configuration Template (.env)
GEMINI_API_KEY = "your-secret-key" # Required
# Tuning parameters (optional)
GEMINI_MODEL = "gemini-2.5-flash"
MAX_WORKERS = 12 # Parallel threads
WINDOW_SIZE = 6 # Larger context windows
File Naming Conventions
Place scans in input_images/
with embedded page numbers:
001.jpg # Valid
page_42.png # Valid
document.pdf # Invalid (missing page number)
Execution Modes
# Full pipeline (OCR → extraction → deduplication)
uv run main.py all
# OCR transcription only
uv run main.py transcribe
# Entity extraction (requires existing transcriptions)
uv run main.py extract
Core Technical Advantages
Context-Aware Processing
Traditional OCR tools fail with cross-page content. For example:
-
Political manifesto signatures on page 4 -
Related text on page 5
Window overlap solves this:
-
Window 1 (pages 1-5) captures signatures -
Window 2 (pages 3-7) links to content -
System auto-merges entities
Dynamic Resource Management
graph LR
A[API Request] --> B{Quota Check}
B -->|Limit Exceeded| C[Wait]
B -->|Within Limit| D[Send Request]
D --> E[Update Counters]
Validation Safeguards
-
Outputs validate against Pydantic schemas -
Automatic retries for API errors -
Real-time error logging
Frequently Asked Questions (FAQ)
「Q: How does it handle non-sequential page numbers?」
A: Files sort numerically by embedded digits (“page_10” after “page_2”)
「Q: Can it process handwritten documents?」
A: Optimized for printed text; handwriting depends on Gemini’s capabilities
「Q: How to adjust deduplication sensitivity?」
A: Modify cosine similarity threshold in source code (default=0.85)
「Q: Supported image formats?」
A: .jpg, .png, .webp via PIL library
「Q: Processing time for 100 pages?」
A: ~25 minutes at default 50 RPM rate
Academic Application Case Study
Research team analyzing 1945-1950 parliamentary records:
-
Processed 800 scanned pages -
Identified 1,247 political entities -
Detected 17 duplicate entries -
Generated voting behavior network analysis
Conclusion: Democratizing Research Access
SEB-OCR’s significance extends beyond technology—it 「lowers research barriers」. Tasks requiring weeks of manual effort now execute via simple commands. As the creator notes: “We don’t replace researchers; we liberate them to focus on genuine discovery.”
❝
Project available under MIT License at GitHub repository
❞
Content derived exclusively from seb-ocr documentation. Technical specifications subject to official documentation.