Site icon Efficient Coder

Quantum Machine Learning AI Agent: Automating Quantum Code Generation Without Prior Expertise | IBM GRM 2025

Quantum Machine Learning AI Agent: Democratizing Quantum Computing for Real-World Applications

An IBM Global Mentorship Program 2025 Project: Automating Quantum Code Generation Without Prior Expertise

Quantum ML Workflow

Why Quantum Machine Learning Needs an AI Assistant

Quantum Machine Learning (QML) combines quantum computing’s processing power with machine learning’s predictive capabilities. Yet three significant barriers prevent wider adoption:

  1. Specialized knowledge requirements (Qiskit framework, quantum circuit design)
  2. High experimental iteration costs (manual parameter tuning)
  3. Complex implementation pipelines (data preprocessing → quantum encoding → result evaluation)

This IBM Global Mentorship Program 2025 project addresses these challenges through an autonomous QML AI agent that:
✔️ Generates optimized Qiskit code on demand
✔️ Self-corrects runtime errors
✔️ Achieves user-defined accuracy benchmarks


Core Functionality: How Your Quantum Programming Assistant Operates

🖥️ Multi-Access Interface Options

Interaction Mode Best For Launch Method
Jupyter Notebook Traditional Python developers Run Agent_Graph.ipynb
LangGraph Studio Visual workflow debugging Execute langgraph dev in terminal

📊 Flexible Data Ingestion Pipeline

# Supported dataset inputs:  
1. sklearn.default("iris", "wine", "diabetes")  
2. UCI/OpenML(repository_id=123)  
3. Google Drive/Sheets(shareable_link)  
4. Local CSV(automatic temp storage)  

🔄 Dual-Optimization Engine Architecture

graph TD  
A[Code Execution] -->|Error Detected| B[Error Correction Loop]  
B -->|Max 4 attempts| C[Code Regeneration]  
C --> A  
D[Accuracy Evaluation] -->|Below Benchmark| E[Parameter Optimization Loop]  
E -->|Max 3 cycles| F[Parameter Adjuster]  
F --> C  

  • Self-Healing Loop: Auto-fixes code errors through iterative regeneration

  • Performance Loop: Dynamically tunes quantum parameters to exceed accuracy targets

⚙️ Six-Node Processing Workflow

  1. Input Parser: Detects dataset type (classification/regression) and target variable
  2. Param Optimizer: Recommends quantum circuit parameters (algorithm, qubits, feature map)
  3. Code Generator: Produces executable Qiskit pipeline (preprocessing → modeling → evaluation)
  4. Code Executor: Runs code via Python REPL and captures outputs/errors
  5. Benchmark Evaluator: Compares results against user-defined accuracy threshold
  6. Output Handler: Returns optimized code + performance report

Step-by-Step Implementation Guide

Environment Configuration (Windows Example)

# 1. Clone repository  
git clone https://github.com/Bluestone-456/IBM-GRM-Project.git  
cd IBM-GRM-Project  

# 2. Create virtual environment  
python -m venv qml-agent-env  
qml-agent-env\Scripts\Activate.ps1  

# 3. Install dependencies  
pip install -r requirements.txt  

# 4. Configure API keys (.env file)  
GOOGLE_API_KEY=<your_gemini_key>  
LANGSMITH_API_KEY=<your_langsmith_key>  

Case Study: Iris Flower Classification

Input Specifications:

{  
  "dataset": "iris",  
  "benchmark_score": 0.95  
}  

Execution Log:

>>> Phase 1: Data Parsing  
Identified sklearn dataset - Target column: 'target'  
Problem type: Multiclass classification (3 species)  

>>> Phase 2: Parameter Initialization  
Recommended quantum configuration:  
- Algorithm: QSVC  
- Feature Map: ZZFeatureMap  
- Quantum Kernel: FidelityQuantumKernel  
- Qubits: 4  

>>> Phase 3: Code Generation (Attempt 1)  
Error: StatevectorSampler.run() takes 2 positional arguments but 5 were given  
✅ Self-repair: Adjusted quantum kernel initialization  

>>> Phase 4: Code Execution (Attempt 2)  
Test accuracy: 96.67%  
🔥 Benchmark exceeded (Target: 95%)  

Output Code Snippet:

# Quantum classification core  
feature_map = ZZFeatureMap(feature_dimension=4, reps=1)  
sampler = StatevectorSampler()  
fidelity_kernel = FidelityQuantumKernel(feature_map=feature_map)  
qsvc = QSVC(quantum_kernel=fidelity_kernel, tol=1e-3)  
qsvc.fit(X_train, y_train)  # Train quantum model  

Technical Architecture Deep Dive

Repository Structure

.  
├── QML_AI_Agent/  
│   ├── Graph.py             # Workflow orchestration  
│   └── utils/  
│       ├── dataset_functions.py # Data loader  
│       ├── Prompts.py       # LLM instruction templates  
│       └── State.py         # Workflow state management  
├── langgraph.json           # Visual workflow configuration  
└── Agent_Graph.ipynb        # Interactive notebook  

Technology Stack

Component Version Role
Python ≥3.11 Execution environment
Qiskit 1.4.3 Quantum circuit construction
LangGraph Latest Stateful workflow management
Gemini 2.0-flash Code generation & error analysis

Performance Evaluation: Real-World Testing

Wine Classification Task

Input Parameters:


  • Dataset: sklearn wine dataset

  • Target Accuracy: 0.85

Optimization Trajectory:

Attempt Algorithm Feature Map Accuracy Status
1 QSVC PauliFeatureMap 79.3% Below target
2 QSVC ZFeatureMap 83.1% Approaching target
3 VQC ZZFeatureMap 87.5% ✅ Target exceeded

Key Parameter Adjustments:

- Optimizer: COBYLA → SPSA  
+ Qubits: 6 → 8  
- Circuit depth: 2 → 3  

Frequently Asked Questions

What quantum knowledge is required to use this tool?

None. The system generates complete Qiskit code – users only provide datasets and accuracy targets.

What dataset sizes are supported?

Optimal performance with <300 samples and <20 features. Diabetes dataset (442 samples) runs in ~35 minutes.

Why the 8-qubit limit?

Quantum simulators on consumer hardware become memory-intensive beyond 8 qubits. Future versions will support cloud quantum hardware.

How to import proprietary data?

  1. Export to CSV
  2. Upload to Google Drive
  3. Share public link
# Agent handles ingestion automatically  
data = pd.read_csv("drive_link.csv")  

Can I customize preprocessing?

Specify requirements in the problem description field:

"Use first 100 samples only"  
"Drop 'timestamp' column"  
"Discretize age into 3 bins"  

Current Limitations & Development Roadmap

Operational Boundaries

  1. Dataset scale: Performance degrades beyond 300 samples
  2. Error recovery: Complex errors may exhaust 4 self-repair attempts
  3. Algorithm support: Currently optimized for supervised learning

Version Development Plan

2025 Q3: Real hardware execution (IBM Quantum/AWS Braket)  
2025 Q4: Unsupervised learning integration (quantum clustering)  
2026 Q1: Batch processing mode (multiple dataset queuing)  

Conclusion: Accelerating Quantum Accessibility

This IBM Global Mentorship Program initiative delivers three transformative benefits:


  • Education: Enables quantum exploration without quantum physics prerequisites

  • Research: Generates baseline QML code for experimental comparison

  • Industry: Validates quantum advantage potential for specific datasets

“We’re not building a universal solution – we’re creating quantum ‘ignition systems.’ When you see a quantum model outperform classical algorithms in 15 minutes, that’s when true discovery begins.”

Project Repository:
https://github.com/Bluestone-456/IBM-GRM-Project

Exit mobile version