LiYing: The Ultimate Offline Solution for Automated ID Photo Processing
Tired of manual background removal and complex photo editing? Discover how this open-source tool automates professional ID photo processing while keeping your images completely private.
Why LiYing Solves Real-World Photo Processing Challenges
As someone who regularly handles identification photos, you’ve likely faced these frustrations:
-
Tedious manual background removal consuming valuable time -
Confusing size requirements for different ID photo formats -
Expensive software subscriptions requiring constant internet access -
Privacy concerns when uploading sensitive photos to cloud services
LiYing addresses these pain points directly. This open-source tool automates the entire workflow from raw photo to printable sheet – all processed locally on your computer. Here’s what makes it revolutionary:
graph TD
A[Privacy Protection] --> B[Fully offline processing]
C[Professional Results] --> D[Automatic background replacement]
E[Cost Efficiency] --> F[Zero subscription fees]
G[Accessibility] --> H[Windows 7+ compatible]
Core Functionality Breakdown
Intelligent Photo Processing Engine
LiYing’s technical architecture combines cutting-edge computer vision models:
-
Dual Detection System
-
YuNet Face Recognition: 98.7% accuracy in diverse lighting conditions -
YOLOv8 Body Pose Detection: Identifies 15 key body points for perfect alignment
-
-
Auto-Correction Technology
Automatically straightens head tilt with ±1.5° precision using affine transformation -
Background Replacement
Utilizes BRIA AI’s RMBG models for hair-accurate segmentation:-
Pure color backgrounds (blue/white/red) -
Custom RGB color values -
Gradient backgrounds
-
Complete Offline Operation
Your photos never leave your computer:
-
No internet connection required -
Zero data collection -
Local processing only -
Supports Windows 7 SP1 through Windows 11
Visual Proof: Before and After
Original Photo | Processed Result |
---|---|
1-inch on 5-inch paper (3×3 layout) |
|
2-inch on 5-inch paper (2×2 layout) |
|
1-inch on 6-inch paper (4×2 layout) |
Important Note: For optimal results, use standard portrait photos with clear subject separation. Complex backgrounds may require manual refinement.
Getting Started Guide
For Windows Users
-
Download Essentials
-
Latest Release Package -
Required Models: -
YOLOv8 Pose ONNX (Google Drive) -
Baidu Pan Models (Password: ahr9)
-
-
-
File Structure Setup
LiYing/ ├── src/ │ └── model/ │ ├── face_detection_yunet_2023mar.onnx │ ├── rmbg_model.onnx │ └── yolov8n-pose.onnx └── run.bat
-
Run Processing
:: Process single photo run.bat "C:\path\to\your_photo.jpg" :: Launch web interface run_webui.bat
For Developers
# Clone repository
git clone https://github.com/aoguai/LiYing
cd LiYing
# Install dependencies
pip install -r requirements.txt
# Windows 7 specific versions
pip install "onnxruntime==1.14.0" "orjson==3.10.7" "gradio==4.44.1"
Model Conversion Guide
For YOLOv8 pose detection:
from ultralytics import YOLO
# Load PyTorch model
model = YOLO("yolov8n-pose.pt")
# Export to ONNX format
model.export(format="onnx", imgsz=640)
Comprehensive Usage Manual
Command Line Mastery
python main.py input.jpg \
--photo-type "2-inch" \
--photo-sheet-size "5-inch" \
--rgb-list "58,95,205" \
--sheet-rows 2 \
--sheet-cols 2 \
--target-size 150 \
--add-crop-lines
Parameter | Alias | Function | Example Values |
---|---|---|---|
--photo-type |
-p |
Photo size | “1-inch”, “35x45mm” |
--photo-sheet-size |
-ps |
Paper size | “5-inch”, “6-inch” |
--rgb-list |
-b |
Background color | “255,255,255” (white) |
--target-size |
-ts |
File size (KB) | 120 |
--size-range |
-szr |
Size tolerance | “100,200” |
--add-crop-lines |
-al |
Add cutting guides | N/A |
Web Interface Advantages
Launch with:
python src/webui/app.py
Access at: http://localhost:7860
Key features:
-
Real-time processing previews -
Drag-and-drop photo uploads -
Visual parameter adjustments -
One-click export functionality
Custom Configuration
Modify CSV files in /data
:
size_config.csv:
type,width_mm,height_mm,dpi
1-inch,25,35,300
2-inch,35,49,300
visa,35x45,35,45,300
color_config.csv:
name,red,green,blue
pure_white,255,255,255
light_blue,173,216,230
official_blue,58,95,205
Technical Troubleshooting
Installation Issues
Problem: Missing DLL errors on Windows
Solution:
-
Install Latest Visual C++ Redistributable -
Place pngquant.exe in: -
LiYing/src/
OR -
LiYing/src/ext/
-
Model Configuration Problems
Problem: “Model not found” errors
Verification checklist:
-
Confirm files exist in src/model/
:-
face_detection_yunet_2023mar.onnx
-
rmbg_model.onnx
(RMBG 1.4 or 2.0) -
yolov8n-pose.onnx
-
-
Validate ONNX models: import onnx onnx_model = onnx.load("src/model/yolov8n-pose.onnx") onnx.checker.check_model(onnx_model)
Advanced Processing
Batch processing script (Windows):
@echo off
setlocal enabledelayedexpansion
for %%i in ("photos\*.jpg") do (
python main.py "%%i" -p "1-inch" -ps "6-inch" -b 255,255,255
echo Processed: %%i
)
Evolution and Updates
2025 Major Enhancements
-
Intelligent Size Control: --size-range "100,200" # Keep between 100-200KB --target-size 150 # Target exactly 150KB
-
Model Upgrades: -
RMBG-2.0 support for finer edge detection -
YOLOv8 compatibility improvements
-
-
Deployment Simplification: -
Auto-detection of model paths -
Single-command builds
-
Historical Milestones
Date | Version | Key Improvements |
---|---|---|
2025-02-07 | v1.2 | WebUI interface, CSV configuration |
2024-08-06 | v1.1 | Pixel-based sizing, i18n fixes |
Technology Ecosystem
Core Dependencies
Component | Project | License |
---|---|---|
Image Compression | AGPicCompress | MIT |
JPEG Optimization | mozjpeg | BSD |
Face Detection | YuNet | BSD |
Background Removal | RMBG | Non-commercial |
Inspiration
“LiYing was born from helping my parents simplify their photo studio workflow. After 30 years of manual processing, they inspired this solution.”
— Project Founder aoguai
Contribution and Licensing
Open Source Participation
Ways to contribute:
-
Submit bug reports via GitHub Issues -
Improve documentation translations -
Develop new features (see Contribution Guide)
AGPL-3.0 License Highlights
-
Freedom: Use commercially and modify freely -
Responsibility: Share modifications under same license -
Transparency: Provide source code to users
Adoption Growth:
Why Professionals Choose LiYing
Competitive Analysis
Feature | Commercial Software | Online Tools | LiYing |
---|---|---|---|
Privacy Protection | ★★☆☆☆ | ★☆☆☆☆ | ★★★★★ |
Cost Efficiency | $/year | /month | Free |
Customization | Limited | None | Unlimited |
Offline Use | Partial | No | Complete |
Ideal Use Cases
-
Photo Studios: Process standard ID photos 5x faster -
School Administrators: Batch-process student ID cards -
HR Departments: Create uniform employee badges -
Immigration Applicants: Generate visa-compliant photos
Next Steps
-
Get Started: git clone https://github.com/aoguai/LiYing && cd LiYing
-
Explore Documentation:
Complete Usage Guide -
Join Community:
Discussion Forum
“In a world of cloud dependencies, LiYing proves powerful tools can respect privacy while delivering professional results. This is open-source at its best.”