⚡ LitGPT: A Comprehensive Toolkit for High-Performance Language Model Operations
Why Choose LitGPT?
Enterprise-Grade LLM Infrastructure empowers developers to:
-
✅ Master 20+ mainstream LLMs (from 7B to 405B parameters) -
✅ Build models from scratch with zero abstraction layers -
✅ Streamline pretraining, fine-tuning, and deployment -
✅ Scale seamlessly from single GPU to thousand-card clusters -
✅ Leverage Apache 2.0 license for commercial freedom
5-Minute Quickstart
Single-command installation:
pip install 'litgpt[extra]'
Run Microsoft’s Phi-2 instantly:
from litgpt import LLM
llm = LLM.load("microsoft/phi-2")
print(llm.generate("Fix the spelling: Every fall, the family goes to the mountains."))
# Output: Every fall, the family goes to the mountains.
“
Technical advantage: Native Flash Attention optimization + 4-bit quantization for consumer-grade GPUs
20+ Cutting-Edge Language Models Supported
Model Family | Typical Size | Developer | Technical Highlights |
---|---|---|---|
Llama 3.3 | 70B | Meta AI | 2024’s most powerful open model |
Gemma 2 | 2B/9B/27B | Google DeepMind | Lightweight inference engine |
Phi 4 | 14B | Microsoft Research | Math reasoning specialization |
Qwen2.5 | 0.5B-72B | Alibaba | Chinese optimization + long-context |
Code Llama | 7B-70B | Meta AI | Code generation specialist |
“
View full model list:
litgpt download list
Six Core Workflows Demystified
1. Model Fine-Tuning (Finance Dataset Example)
# Download financial Q&A dataset
curl -L https://huggingface.co/datasets/ksaw008/finance_alpaca/resolve/main/finance_alpaca.json -o finance_data.json
# Launch fine-tuning (auto-downloads base model)
litgpt finetune microsoft/phi-2 \
--data JSON \
--data.json_path finance_data.json \
--out_dir finetuned_phi2_finance
# Test customized model
litgpt chat finetuned_phi2_finance/final
Technical highlights:
-
LoRA/QLoRA efficient tuning -
Custom JSON/CSV dataset support -
Auto-validation split ( --data.val_split_fraction 0.1
)
2. Production Deployment
# Deploy base model
litgpt serve microsoft/phi-2
# Deploy fine-tuned model
litgpt serve finetuned_phi2_finance/final
API integration:
import requests
response = requests.post(
"http://localhost:8000/predict",
json={"prompt": "Predict today's US stock trend"}
)
print(response.json()["output"])
3. Model Evaluation
litgpt evaluate microsoft/phi-2 --tasks 'truthfulqa_mc2,mmlu'
Key evaluation metrics:
-
Factual accuracy (TruthfulQA) -
Multidisciplinary knowledge (MMLU) -
Coding proficiency (HumanEval)
4. Interactive Testing
litgpt chat meta-llama/Llama-3.2-3B-Instruct
>> User: Explain quantum entanglement
>> Model: Quantum entanglement occurs when two particles...
5. Pretraining from Scratch
# Prepare corpus
mkdir custom_texts
curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt -o custom_texts/book1.txt
# Launch pretraining
litgpt pretrain EleutherAI/pythia-160m \
--data TextFiles \
--data.train_data_path "custom_texts/" \
--train.max_tokens 10_000_000
6. Continued Pretraining
litgpt pretrain EleutherAI/pythia-160m \
--initial_checkpoint_dir EleutherAI/pythia-160m \
--data TextFiles \
--data.train_data_path "medical_corpus/"
Seven Core Technical Capabilities
-
Performance Optimization
-
Flash Attention v2 acceleration -
FSDP multi-GPU distributed training -
TPU/XLA hardware support
-
-
Memory Compression
graph LR A[FP32 Default] -->|4x compression| B[FP16] B -->|2x compression| C[INT8] C -->|Maximum compression| D[NF4 4-bit]
-
Parameter-Efficient Tuning
Technique Memory Usage Speed Use Case Full Fine-Tuning 100% Slow Ample resources LoRA 30-50% Fast Single GPU QLoRA 10-25% Medium Consumer GPUs Adapter 20-40% Fast Multi-task switching -
Enterprise-Grade Configurations
# config_hub/finetune/llama-7b/qlora.yaml checkpoint_dir: meta-llama/Llama-2-7b-hf quantize: bnb.nf4 # 4-bit quantization lora_r: 8 # LoRA rank lora_alpha: 16 data: class_path: litgpt.data.Alpaca2k train: global_batch_size: 8 micro_batch_size: 1
-
Ecosystem Integration
-
HuggingFace model loading -
PyTorch Lightning compatibility -
ONNX/TensorRT export
-
-
Multi-format Data Handling
Data Type Processing Method Command Example Instruction Alpaca format --data Alpaca
Plain Text Directory aggregation --data TextFiles
Custom JSON Field mapping --data JSON --data.key prompt
-
Production Deployment
-
Dynamic batching -
Streaming responses -
Adaptive quantization
-
Real-World Case Studies
Case 1: TinyLlama 1.1B Training
# Launch 1.1B parameter pretraining
litgpt pretrain TinyLlama/tinyllama-1.1b \
--train.max_tokens 3_000_000_000 \
--devices 8 # 8-GPU parallelization
Case 2: Medical Q&A Fine-Tuning
litgpt finetune meta-llama/Llama-2-7b-hf \
--data JSON \
--data.json_path medical_qa.json \
--adapter lora \
--quantize nf4-dq
Case 3: Code Generation Service
litgpt serve Salesforce/codegen-350M-mono \
--port 8080 \
--quantize int8
Frequently Asked Questions
Q1: GPU requirements for 70B models?
A: Through 4-bit quantization, 70B models run on single 40GB GPUs:
litgpt chat meta-llama/Llama-2-70b-chat --quantize nf4
Q2: Chinese dataset adaptation?
A: Use custom JSON loading:
litgpt finetune Qwen/qwen1.5-7b \
--data JSON \
--data.json_path chinese_data.json \
--data.key "instruction"
Q3: Resume interrupted training?
A: Automatic checkpoint recovery:
litgpt pretrain --resume out/checkpoint/latest.ckpt
Q4: Multi-node training support?
A: Scalable to thousand-GPU clusters:
# 32 nodes x 8 GPUs
litgpt pretrain \
--devices 8 \
--num_nodes 32 \
--strategy fsdp
Begin Your LLM Journey
# 1. Install
pip install 'litgpt[all]'
# 2. List available models
litgpt download list
# 3. Download Llama 3
litgpt download meta-llama/Llama-3.1-8B
# 4. Launch interactive session
litgpt chat meta-llama/Llama-3.1-8B
“
Official Repository: https://github.com/Lightning-AI/litgpt
Technical Support: Discord Community https://discord.gg/VptPCZkGNa
Join 5000+ developers mastering enterprise-grade LLM technologies