Building Intelligent Chatbots with Spring AI: Implementing Conversational Memory
“
Context retention capability is the defining feature separating basic Q&A tools from true conversational AI systems. This comprehensive guide explores how to implement persistent memory in chatbots using Spring AI framework for natural human-machine dialogues.
1. Environment Setup and Technology Stack
Core Component Dependencies
The solution leverages:
- 
Spring Boot 3.5.0: Microservice framework  - 
Spring AI 1.0.0-M6: Core AI integration library  - 
Java 17: Primary development language  - 
Ollama: Local LLM runtime environment  
Maven Configuration
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.5.0</version>
    </parent>
    
    <groupId>com.example</groupId>
    <artifactId>test</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    
    <properties>
        <java.version>17</java.version>
        <spring-ai.version>1.0.0-M6</spring-ai.version>
    </properties>
    
    <dependencies>
        <!-- Ollama integration -->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
            <version>1.0.0-M6</version>
        </dependency>
        
        <!-- Spring Boot core -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        
        <!-- Spring AI core library -->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-core</artifactId>
            <version>1.0.0-M6</version>
        </dependency>
    </dependencies>
    
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>${spring-ai.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>
</project>
Model Configuration (application.properties)
spring.ai.ollama.chat.model=mistral
2. Basic Chatbot Implementation (Without Memory)
Core Controller Code
@RestController
public class BasicChatController {
    private final ChatModel chatModel;
    // Inject Ollama chat model
    public BasicChatController(@Qualifier("ollamaChatModel") ChatModel chatModel) {
        this.chatModel = chatModel;
    }
    @PostMapping("/chat")
    public String chat(@RequestBody String userMessage) {
        // Create single-turn prompt
        Prompt prompt = new Prompt(new UserMessage(userMessage));
        // Get model response
        return chatModel.call(prompt).getResult().getOutput().getText();
    }
}
Functional Limitations
- 
Conversational Amnesia: Each request treated as isolated interaction  - 
Context Fragmentation: User: My name is John AI: Nice to meet you, John! User: What's my name? AI: Sorry, I don't know your name - 
Unnatural Flow: Unable to handle contextual references  
3. Implementing Conversation Memory
Enhanced Memory Controller
@RestController
public class MemoryChatController {
    private final ChatModel chatModel;
    // Store conversation history
    private final List<UserMessage> messageHistory = new ArrayList<>();
    public MemoryChatController(@Qualifier("ollamaChatModel") ChatModel chatModel) {
        this.chatModel = chatModel;
    }
    @PostMapping("/chat")
    public String chat(@RequestBody String userMessage) {
        // Create user message object
        UserMessage userMsg = new UserMessage(userMessage);
        // Add to history
        messageHistory.add(userMsg);
        
        // Build prompt with full context
        Prompt prompt = new Prompt(new ArrayList<>(messageHistory));
        
        // Get contextual response
        return chatModel.call(prompt).getResult().getOutput().getText();
    }
}
Implementation Workflow
graph LR
    A[User Input] --> B{Create UserMessage}
    B --> C[Store in messageHistory]
    C --> D[Build Contextual Prompt]
    D --> E[Send to LLM]
    E --> F[Return Contextual Response]
Core Benefits of Memory
- 
Context Continuity
Example conversation:User: I'm a DevOps engineer specializing in cloud infrastructure AI: Great! What cloud platforms do you work with? User: What's my specialization? AI: You specialize in cloud infrastructure - 
Natural Dialogue Flow
Supports contextual follow-ups:User: Recommend Python books AI: "Fluent Python" and "Python Crash Course" User: Which is better for beginners? AI: "Python Crash Course" is more beginner-friendly 
4. Production Environment Considerations
1. Token and Context Window Management
Optimization Strategies:
- 
History Summarization: Compress old conversations  - 
Relevance Filtering: Prioritize key interactions  - 
Intelligent Truncation: Preserve recent dialogues  
2. Persistent Storage Solutions
Limitations of in-memory storage (ArrayList):
- 
Memory loss on server restart  - 
No multi-session support  - 
Lack of data durability  
Production-Grade Architecture:
graph TB
    A[Client Request] --> B[Chat Controller]
    B --> C{Query Redis}
    C -->|Existing session| D[Retrieve History]
    C -->|New session| E[Create New Record]
    D --> F[Build Prompt]
    E --> F
    F --> G[Call LLM]
    G --> H[Save to Redis]
Recommended Technologies:
- 
Redis: In-memory database (millisecond response)  - 
MongoDB: Document database (flexible schema)  - 
PostgreSQL: Relational DB with JSONB support  
5. Performance Optimization Guide
Memory Management Strategies
Key Monitoring Metrics
- 
Tokens per Request  - 
Context Construction Time  - 
90% History Utilization Rate  - 
Conversation Breakage Rate  
6. Implementation Best Practices
Business Value of Memory
- 
User Experience: Human-like conversation flow  - 
Efficiency: Eliminate redundant information  - 
Intelligence: Handle complex dialogues  - 
Use Case Expansion: Support for customer service, education, etc.  
Enterprise Implementation Guide
- 
Layered Storage Architecture:
- 
Hot Data: Redis for recent conversations  - 
Cold Data: PostgreSQL for historical storage  
 - 
 - 
Memory Management Middleware:
 
public class MemoryManager {
    // LRU-based memory storage
    private static final int MAX_HISTORY_ITEMS = 20;
    private final Map<String, Deque<Message>> sessionMemories = 
        Collections.synchronizedMap(new LinkedHashMap<>());
    
    public void addMessage(String sessionId, Message message) {
        // Session memory management logic
    }
    
    public List<Message> getHistory(String sessionId) {
        // Retrieve conversation context
    }
}
- 
Memory Effectiveness Evaluation: - 
Design continuity test scenarios  - 
Monitor context retention rates  - 
Implement user feedback mechanisms  
 - 
 
“
Future Outlook: With emerging 128K+ token models, conversational AI will achieve true long-term memory. Spring AI continues to lower development barriers for intelligent chatbot systems within Java ecosystems.

